Pure Core 3 Past Paper Questions Pack A

Taken from MAP1

January 2001

2 (a) Sketch on one pair of axes the graphs of

$$
y=6-x \text { and } y=\ln x
$$

(1 mark)
(b) Hence state the number of roots of the equation

$$
6-x=\ln x
$$

(1 mark)
(c) By considering values of the function f , where

$$
\mathrm{f}(x)=6-x-\ln x
$$

(i) show that the equation in part (b) has a root α such that

$$
4<\alpha<5
$$

(ii) determine whether α is closer to 4 or to 5 .

$y=\mathrm{f}(x)$
$y=g(x)$

The diagrams show the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$, where the functions f and g are defined on the domain of all real numbers by

$$
\mathrm{f}(x)=|x-2| \text { and } \mathrm{g}(x)=|x|-2
$$

(a) Describe the geometrical transformations by which each of the above graphs can be obtained from the graph of $y=|x|$.
(b) Sketch the graph of $y=\mathrm{f}(x)-\mathrm{g}(x)$.
(c) (i) State whether the function f has an inverse function.
(ii) State whether the function g is even, odd or neither.
(iii) Give the range of the function h , where $\mathrm{h}(x)=\mathrm{f}(x)-\mathrm{g}(x)$.
(3 marks)
(d) Solve the following inequalities:
(i) $\mathrm{f}(x)<2$,
(ii) $\mathrm{g}(x)<2$,
(iii) $\mathrm{f}(x)>\mathrm{g}(x)$.

7 (a) Solve the inequality

$$
|x-3|>1
$$

(3 marks)

8

The diagram shows the graph of $y=\mathrm{f}(x)$, where f is defined for all real numbers by

$$
\mathrm{f}(x)=2 \mathrm{e}^{-x}
$$

(a) Describe a sequence of geometrical transformations by which the above graph can be obtained from the graph of $y=\mathrm{e}^{x}$.
(3 marks)
(b) Copy the above diagram and sketch on the same axes the graph of

$$
y=\mathrm{f}^{-1}(x)
$$

(2 marks)
(c) Find an expression for $\mathrm{f}^{-1}(x)$.
(3 marks)
(d) State the domain and range of f^{-1}.
(2 marks)
(e) At time t hours after an injection, a hospital patient has $\mathrm{f}(t)$ milligrams per litre of a certain drug in his blood. Find the time after the injection at which the patient has 0.5 milligrams per litre of the drug in his blood.
(3 marks)

4 The diagram shows a sketch of the graph of $y=\cos 2 x$ with a line of symmetry L.

(a) (i) Describe the geometrical transformation by which the graph of

$$
y=\cos 2 x
$$

can be obtained from that of $y=\cos x$.
(2 marks)
(ii) Write down the equation of the line L.
(1 mark)

The function f is defined for the restricted domain $0 \leqslant x \leqslant \frac{\pi}{2}$ by

$$
\mathrm{f}(x)=\cos 2 x
$$

(b) (i) State the range of the function f.
(ii) Write down the domain and range of the inverse function f^{-1}, making it clear which is the domain of f^{-1} and which is its range.
(iii) Sketch the graph of $y=\mathrm{f}^{-1}(x)$.

The function g is defined for all real numbers by

$$
\mathrm{g}(x)=|x| .
$$

(c) (i) Write down an expression for $\mathrm{g} \mathrm{f}(x)$.
(ii) Sketch the graph of $y=\operatorname{gf}(x)$.

6 A graph has equation $y=\left(\mathrm{e}^{x}-1\right)\left(\mathrm{e}^{x}-2\right)$. The following correct reasoning is used to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

$$
\begin{aligned}
& y=\left(\mathrm{e}^{x}-1\right)\left(\mathrm{e}^{x}-2\right) \\
\Rightarrow \quad & y=\mathrm{e}^{2 x}-3 \mathrm{e}^{x}+2 \\
\Rightarrow \quad & \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{e}^{2 x}-3 \mathrm{e}^{x} \\
\Rightarrow \quad & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{x}\left(2 \mathrm{e}^{x}-3\right)
\end{aligned}
$$

(a) Using these results,
(i) give a reason why the graph has only one stationary point,
(ii) find the coordinates of the stationary point,
(iii) find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at the stationary point, and hence determine whether the stationary point is a maximum or a minimum.
(b) (i) Show that the graph intersects the x-axis when $x=0$ and when $x=\ln 2$. (2 marks)
(ii) Show that the area of the region below the x-axis enclosed by the graph and the x-axis is

$$
\frac{3}{2}-2 \ln 2
$$

(5 marks)

June 2002

3 (a) Differentiate:
(i) $2 x^{\frac{1}{2}}$;
(ii) $\ln (x+1)$.
(3 marks)
(b) Hence show that $\int_{1}^{4}\left(x^{-\frac{1}{2}}+\frac{1}{x+1}\right) \mathrm{d} x=2+\ln \frac{5}{2}$.

The diagram shows the graph of

$$
y=\mathrm{e}^{-2 x} .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(3 marks)
(b) (i) Find $\int y d x$.
(ii) Hence show that the area of the region shaded on the diagram is

$$
\frac{\mathrm{e}^{2}-1}{2 \mathrm{e}^{2}}
$$

(3 marks)

The diagram shows the graphs of $y=x$ and $y=\mathrm{f}(x)$.
(a) (i) Describe the geometrical transformation by which the graph of $y=\mathrm{f}^{-1}(x)$ can be obtained from the graph of $y=\mathrm{f}(x)$.
(ii) Copy the above diagram and sketch on the same axes the graph of

$$
\begin{equation*}
y=\mathrm{f}^{-1}(x) \tag{2marks}
\end{equation*}
$$

(b) The function f is defined for $x>0$ by

$$
\mathrm{f}(x)=3 \ln x
$$

(i) Describe the geometrical transformation by which the graph of $y=\mathrm{f}(x)$ can be obtained from the graph of $y=\ln x$.
(2 marks)
(ii) Find an expression for $\mathrm{f}^{-1}(x)$.
(3 marks)

1 The diagram shows the graphs of

$$
y=x^{2}+1 \text { and } y=\frac{1}{x}
$$

for $x>0$. The graphs intersect at the point P.

(a) Show that the x-coordinate of P satisfies the equation

$$
\begin{equation*}
x^{3}+x-1=0 \tag{2marks}
\end{equation*}
$$

(b) Show that the x-coordinate of P lies between 0.6 and 0.7 .

3 (a) Show that $\int_{1}^{4} x^{\frac{3}{2}} \mathrm{~d} x=\frac{62}{5}$.
(4 marks)
(b) Find the value of

$$
\int_{2}^{18} \frac{1}{2 x} \mathrm{~d} x
$$

giving your answer in the form $\ln n$.

7 The diagram shows the graph of $y=2 \mathrm{e}^{-x}$.

(a) Describe a series of geometrical transformations by which the graph of $y=2 \mathrm{e}^{-x}$ can be obtained from that of $y=\mathrm{e}^{x}$.
(3 marks)
(b) The function f is defined for the restricted domain $x \geqslant 0$ by

$$
\mathrm{f}(x)=2 \mathrm{e}^{-x}
$$

(i) State the range of the function f.
(ii) State the domain and range of the inverse function f^{-1}.
(iii) Find an expression for $\mathrm{f}^{-1}(x)$.
(3 marks)
(iv) State, giving a reason, whether

$$
x>\ln 2 \Rightarrow \mathrm{f}(x)<1
$$

(2 marks)

5 (a) The diagram shows the graph of $y=\mathrm{f}(x)$, where the function f is defined for all values of x by

$$
\mathrm{f}(x)=5 \mathrm{e}^{-x}
$$

(i) Write down the coordinates of the point where the graph intersects the y-axis. (1 mark)
(ii) State the range of the function f.
(1 mark)
(iii) Find the value of $f(\ln 6)$, giving your answer as a fraction. (2 marks)
(b) The function g is defined for all values of x by

$$
\mathrm{g}(x)=x+10
$$

(i) Show that $\operatorname{gf}(x)=5\left(\mathrm{e}^{-x}+2\right)$.
(1 mark)
(ii) State the range of the function gf .
(1 mark)
(iii) Sketch the graph of $y=\operatorname{gf}(x)$.
(2 marks)
(iv) Show that $\operatorname{gf}(x)=11 \Rightarrow x=\ln 5$. (3 marks)
(c) A dish of water is left to cool in a room where the temperature is $10^{\circ} \mathrm{C}$. At time t minutes, where $t \geqslant 0$, the temperature of the water in degrees Celsius is

$$
5\left(\mathrm{e}^{-t}+2\right)
$$

(i) State the temperature of the water at time $t=0$.
(1 mark)
(ii) Calculate the time at which the temperature of the water reaches $11^{\circ} \mathrm{C}$. Give your answer to the nearest tenth of a minute.
(2 marks)

6 The function f is defined for $x \geqslant 0$ by

$$
\mathrm{f}(x)=x^{\frac{1}{2}}+2
$$

(a) (i) Find $\mathrm{f}^{\prime}(x)$.
(ii) Hence find the gradient of the curve $y=\mathrm{f}(x)$ at the point for which $x=4$. (1 mark)
(b) (i) Find $\int f(x) \mathrm{d} x$. (3 marks)
(ii) Hence show that $\int_{0}^{4} \mathrm{f}(x) \mathrm{d} x=\frac{40}{3}$.
(2 marks)
(c) Show that $\mathrm{f}^{-1}(x)=(x-2)^{2}$.
(d) The diagram shows a symmetrical shaded region A bounded by:
parts of the coordinate axes;
the curve $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant 4$; and the curve $y=\mathrm{f}^{-1}(x)$ for $2 \leqslant x \leqslant 4$.

(i) Write down the equation of the line of symmetry of A.
(l mark)
(ii) Calculate the area of A.

June 2003

4 It is given that x satisfies the equation

$$
2 \cos ^{2} x=2+\sin x
$$

(a) Use an appropriate trigonometrical identity to show that

$$
\begin{equation*}
2 \sin ^{2} x+\sin x=0 \tag{2marks}
\end{equation*}
$$

(b) Solve this quadratic equation and hence find all the possible values of x in the interval $0 \leqslant x<2 \pi$.

5 The diagram shows the graph of $y=\mathrm{f}(x)$, where f is defined for $x>0$ by

$$
\mathrm{f}(x)=2+\ln x
$$

(a) (i) Differentiate $\mathrm{f}(x)$ to find $\mathrm{f}^{\prime}(x)$.
(ii) Find the gradient of the curve at the point where $x=\mathrm{e}$.
(1 mark)
(b) Describe the geometrical transformation by which the graph of $y=2+\ln x$ can be obtained from the graph of $y=\ln x$.
(c) (i) State the range of the function f.
(ii) State the domain and range of the inverse function f^{-1}.
(iii) Find an expression for $\mathrm{f}^{-1}(x)$.
(d) The function g is defined for all x by

$$
\mathrm{g}(x)=\mathrm{e} x^{3}
$$

Show that:
(i) $\operatorname{fg}(x)=3(1+\ln x)$;
(3 marks)
(ii) $\operatorname{fg}(x)=9 \Rightarrow x=\mathrm{e}^{2}$.

November 2003

7 The diagram shows the graph of

$$
y=2|x|+1
$$

(a) Copy the diagram and, on the same pair of axes, sketch the graph of

$$
y=|2 x+1|
$$

(c) Find the full solution set for the inequality

$$
|2 x+1|<2|x|+1 .
$$

January 2004

5 The diagram shows a sketch of the graph of

$$
y=\mathrm{e}^{2 x}+2 x^{-1} \quad \text { for } x>0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Show that, at the stationary point on the graph, $x^{2} \mathrm{e}^{2 x}=1$.
(c) Deduce that, at the stationary point,

$$
x \mathrm{e}^{x}=1
$$

and hence

$$
\ln x+x=0
$$

(d) Show that the equation

$$
\ln x+x=0
$$

has a root between 0.5 and 0.6 .
(e) Find $\int\left(\mathrm{e}^{2 x}+2 x^{-1}\right) \mathrm{d} x$.

6 (a) The functions f and g are defined by:

$$
\begin{array}{ll}
\mathrm{f}(x)=\sqrt{x} & \text { for } x \geqslant 0 \\
\mathrm{~g}(x)=x-1 & \text { for all values of } x
\end{array}
$$

(i) Write down expressions for $\mathrm{fg}(x)$ and $\operatorname{gf}(x)$.
(2 marks)
(ii) Verify that

$$
x=1 \Rightarrow \mathrm{fg}(x)=\mathrm{gf}(x)
$$

(b) The diagram shows the graph of $y=\mathrm{h}(x)$, where the function h is defined for the domain $1 \leqslant x \leqslant 5$ by

$$
\mathrm{h}(x)=\sqrt{x-1}
$$

(i) Describe the transformation by which the graph of $y=\sqrt{x-1}$ can be obtained from the graph of $y=\sqrt{x}$.
(2 marks)
(ii) Write down the range of the function h . (1 mark)
(iii) Write down the domain and range of the inverse function h^{-1}. (2 marks)
(iv) Find an expression for $\mathrm{h}^{-1}(x)$.
(3 marks)

June 2004

3 (a) Show that the equation

$$
2 x^{\frac{3}{2}}-9 x+6=0
$$

has a root between 0 and 1 .
(3 marks)
(i) Find $\int\left(e^{2 x}+1\right) \mathrm{d} x$.
(ii) Hence show that $\int_{0}^{\ln 2}\left(\mathrm{e}^{2 x}+1\right) \mathrm{d} x=\frac{3}{2}+\ln 2$.
(b) The diagram shows the graph of

$$
y=\mathrm{e}^{2 x}+1
$$

Find the y-coordinate of the point where the graph intersects:
(i) the y-axis;
(1 mark)
(ii) the line $x=\ln 2$.
(2 marks)
(c) The function f is defined on the restricted domain $0 \leqslant x \leqslant \ln 2$ by

$$
\mathrm{f}(x)=\mathrm{e}^{2 x}+1
$$

(i) Find the range of the function f.
(ii) On one pair of axes sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$. (2 marks)
(iii) Find an expression for $\mathrm{f}^{-1}(x)$. (3 marks)

